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Abstract
We use a master equation approach based on the Poland–Scheraga free energy
for DNA denaturation to investigate the (un)zipping dynamics of a denaturation
wedge in a stretch of DNA that is clamped at one end. In particular, we quantify
the blinking dynamics of a fluorophore–quencher pair mounted within the
denaturation wedge. We also study the behavioural changes in the presence
of proteins that selectively bind to single-stranded DNA. We show that such
a set-up could be well suited as an easy-to-implement nanodevice for sensing
environmental conditions in small volumes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

During the last decade or so, technical progress in detection and manipulation of single
molecules and their dynamics has snowballed. By fluorescence spectroscopy, optical tweezers,
atomic force microscopy, or patch clamp techniques, for instance, it is possible on the single-
molecule level to probe the opening and closing dynamics of local denaturation zones in a DNA
molecule [1], to study the binding of single-stranded DNA binding proteins to overstretched
DNA [2, 3], to disrupt domains stepwise in a protein [4], and to monitor the passage of
a biopolymer through a nanopore in a membrane [5, 6], to name just a few possibilities.
This experimental progress is accompanied by advances in the theoretical understanding of
fundamental processes relevant on small scales such as the Jarzinsky relation connecting
measurements of the non-equilibrium work needed, e.g., to stretch an RNA segment [7] to
the difference in the corresponding thermodynamic potential [8], and the entropy production
along single trajectories exposed to stochastic forces [9]. Given the novel possibilities for
synthesizing supramolecules with topologically confined mechanical units [10], entropy-based
designer molecules such as molecular muscles were proposed [11, 12], and new possibilities
for producing dynamic nanosensors discussed [13].
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Figure 1. Schematic diagram of the end-denaturing of a double-stranded DNA molecule that
is clamped at one end—here, by attachment to a wall. The number of denatured base-pairs is
m, and the overall length of the DNA segment is M. Selectively single-stranded DNA binding
proteins from the surrounding solution bind to the denatured portion of the DNA. Once bound, the
SSBs lower the probability for closing of the denaturation wedge. In reality, the clamping can be
achieved by sealing the denaturation zone created by AT base-pairs with a stretch of more stable
GC base-pairs; compare [1].

In what follows, we explore the dynamics of a stretch of double-stranded DNA (dsDNA)
that is clamped at one end but allowed to denature from the other, as sketched in figure 1.
Internal bubble formation, in comparison, is suppressed by a Boltzmann factor σ0 �
10−5 . . . 10−3 [14], and this effect can therefore be neglected; see below. In the set-up we
have in mind an individual base-pair is tagged with a fluorophore–quencher pair; see figure 2.
Once separation has been achieved, the dye starts to fluoresce, and the resulting blinking can be
detected [15]. Our aim is to establish a quantitative description of such a molecular beacon. We
will use a master equation approach to describe the sequential unzipping and zipping dynamics
of the denaturation wedge, also taking into account the possible presence of proteins that
selectively bind to single-stranded DNA (ssDNA). These single-stranded DNA binding proteins
(SSBs) occur in the cells of most organisms. Here, we show that the autocorrelation function
for the blinking depends on the concentration of SSBs and the strength of binding between the
single strand and the SSBs (the latter varies, for instance, with the salt concentration) as well
as temperature. The denaturation wedge depicted in figure 2 therefore acts as a nanosensor
that can be probed on the single-molecule level using fluorescence techniques.

2. Experimental set-up: quantifying the blinking dynamics of the molecular beacon

Before setting out to describe our general theoretical scheme, we first describe the experimental
set-up we have in mind in some detail. We consider modelling the blinking behaviour of a
fluorophore–quencher pair mounted on the denaturation wedge as shown in figure 2. This
set-up, similar to the ones described in [1, 15], works as follows. As long as the dsDNA is
intact, the fluorophore and quencher are in close proximity. Once they come apart from one
another when the denaturation wedge opens up, the incident laser light causes fluorescence of
the dye. The on/off blinking of this ‘molecular beacon’ can be monitored in the focus of a
confocal microscope.

The blinking yields immediate information about the state of the base-pair that is tagged
by the dye–quencher pair. Blinking, that is, indicates that the base-pair is currently broken. It
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x=xT

Figure 2. Schematic diagram of the molecular beacon set-up. A fluorophore starts to fluoresce in
the incident laser light once the denaturation wedge moves the fluorophore apart from the quencher.

is therefore advantageous to define the random variable I (t) with the property

I (t) =
{

0 if base-pair at x = xT is closed

1 if base-pair at x = xT is open,
(1)

and we are interested in the behaviour of the autocorrelation function

A(t) = 〈I (t)I (0)〉 − 〈I 〉2
eq, (2)

where 〈I 〉eq is the (ensemble) equilibrium value. Given the fact that the formation of an internal
denaturation bubble is connected with a rather high initiation barrier σ0 � 10−5 . . . 10−3

(corresponding to 7 . . . 12 kBT at room temperature), such bubbles are much less probable
than denaturation from the unclamped end; we focus just on the end-denaturation. Therefore,
a base-pair at x = xT is open if m � xT ; see figure 2. A word on the interpretation of
the average 〈I (t)I (0)〉 is in order. Denoting by ρ(I, t; I ′, 0) the associated joint probability
density that the tagged base-pair is in state I at time t given that it was in state I ′ at initial time
t = 0, we can rewrite the autocorrelation function as

〈I (t)I (0)〉 =
∑
I,I ′

Iρ(I, t; I ′, 0)I ′ = ρ(1, t; 1, 0). (3)

This is nothing but the survival probability density for a denaturation wedge, i.e., the probability
density for the base-pair being open at time t , given that is was open at t = 0.

In the remaining part of this study we present a general scheme for calculating the opening
and closing dynamics for the physical system presented in figures 1 and 2. The focus is on
presenting a scheme which allows for the calculation of the measurable quantity A(t) defined
above. We note, however, that our scheme is sufficiently general to allow for straightforward
derivation of other experimental quantities, such as the binding dynamics of SSBs in optical
tweezers overstretching set-ups [2, 3, 16]. In that case, the Boltzmann factor for opening
a base-pair, u = exp(βε) (ε being the binding energy of a base-pair; see below), becomes
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modified to u = exp(βε +T θ0), where T is the external torque exerted by the optical tweezers
set-up, and θ0 = 2π/10.35 is the relaxed dsDNA twist per base-pair.

3. Master equation for end-unzipping

Denote by P(m, n, t) the probability distribution that there are m broken base-pairs and n
bound SSBs at time t . As m and n are the slow variables of the system, their dynamics can be
described in terms of the master equation

∂ P(m, n, t)

∂ t
= t+(m − 1, n)P(m − 1, n, t) + t−(m + 1, n, t)P(m + 1, n, t)

− [t+(m, n) + t−(m, n)]P(m, n, t)

+ r+(m, n − 1)P(m, n − 1) + r−(m, n + 1)P(m, n + 1, t)

− [r+(m, n) + r−(m, n)]P(m, n, t); (4)

compare the discussion in [17–19]. With mediation by the transfer rates t± and r±, the
population of a given state (m, n) is continuously changed by (un)zipping a further base-
pair and (un)binding an SSB. To complete the master equation (4), we need to specify the
boundary conditions: the clamping to the right at base-pair x = M + 1 ensures that no further
unzipping beyond base-pair M occurs, that is,

t+(M, n) = 0. (5)

Moreover, if both branches of the denaturation wedge are fully occupied by SSBs, i.e., the
maximum number of SSBs,

nmax(m) = 2
[m

λ

]
, (6)

is bound, then the base-pair at the zipping fork is not allowed to close:

t−
(

m = nλ

2
, n = nmax(m)

)
= 0. (7)

Also, if only one of the two branches of the wedge is fully occupied, the zipper cannot close:

t−
(

m = (n + 1)λ

2
, n = nmax(m) − 1

)
= 0. (8)

Similarly to the case for (un)zipping rates t±, we impose the boundary condition

r+ (
m, nmax(m)

) = 0, (9)

i.e., once the denaturation wedge is completely occupied, no additional SSB is allowed to bind;
and when n = 0 SSBs are bound, no further SSB can detach:

r− (m, 0) = 0, (10)

The configuration lattice showing the allowed moves is illustrated in figure 3. Empty arrow
heads indicate forbidden moves.

The general solution of the master equation (4) can be obtained through the ansatz

P(m, n, t) =
∑

p

cp Q p(m, n)e−ηp t , (11)

corresponding to an expansion in eigenmodes. Here, the expansion coefficients cp are
determined by the initial condition. Inserting the above expansion into equation (4) produces
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Figure 3. Configuration lattice showing the possible configurations � of the system in the (m, n)-
plane. The empty arrow heads represent forbidden moves due to the boundary conditions. The
maximum number of bound SSBs is N = 2[M/λ].

the eigenvalue equation

−ηp Q p(m, n) = t+(m − 1, n)Q p(m − 1, n) + t−(m + 1, n)Q p(m + 1, n)

− [t+(m, n) + t−(m, n)]Q p(m, n)

+ r+(m, n − 1)Q p(m, n − 1) + r−(m, n + 1)Q p(m, n + 1)

− [r+(m, n) + r−(m, n)]Q p(m, n) (12)

for the pth eigenmode. The concrete forms for the transfer rates are defined in the next section.

4. Partition function and transfer rates

In order to obtain the transfer coefficients t± and r±, we first define the partition coefficient
Z (m, n) for the end-denaturation fork of the dsDNA and the SSBs bound to its two branches.
To this end, we note that we can decouple the partition coefficient

Z (m, n) = Z DNA(m)Z SSB(m, n) (13)

into the contributions Z DNA counting the degrees of freedom of the DNA molecule, and
the contribution Z SSB of the SSBs. According to the Poland–Scheraga model of DNA
denaturation, we have

Z DNA(m) = um . (14)

Here, u = exp (βε) is the Boltzmann factor for opening a base-pair, i.e., the activation needed
to overcome the free energy barrier ε for opening an additional base-pair. ε combines two
appreciable contributions from enthalpy cost and entropy gain on breaking the base-pair that
almost cancel, such that ε is of the order of kBT at physiological temperature and salt conditions:
at 37◦, u ≈ 0.6 in a zone of AT base-pairs, and u ≈ 0.2 in a GC domain [14]. We note that
the parameter u is sensitive to the salt concentration. Here, we consider homopolymer zones
of either AT or GC; for the treatment of a heteropolymer, see [20]. As already mentioned,
we also neglect the formation of internal denaturation bubbles within the dsDNA stretch that
would require the crossing of the initiation barrier σ0. This contrasts with the situation for our
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previous studies [21, 17, 18, 20, 22], in which we focused on internal bubbles, preventing end-
denaturation wedges by clamping at both ends. Note also that in the case of the end-wedges,
we do not have to take care of the entropy loss due to loop formation that occurs in internal
denaturation bubbles.

The contribution from the SSBs has the form

Z SSB(m, n) = κn�SSB(m, n), (15)

sharing the energetic component

κ = c0 K eq (16)

per bound SSB, where c0 is the SSB concentration in solution and K eq = v0 exp(|Ebind|/kBT )

the equilibrium binding constant of SSB binding, with the typical volume v0 of the SSBs and
the binding energy Ebind; and the number of possible ways of arranging n SSBs on the two
arches of the denaturation fork, both of length m [17, 18], is

�SSB(m, n) =
n∑

n′=0

ωSSB(m, n′)ωSSB(m, n − n′)

∣∣∣∣∣
n−n′�nmax/2

n′�nmax/2

. (17)

This counting allows us to have different numbers of SSBs on the two arches. The number of
ways of distributing n SSBs each covering λ bases, on an arch of size m, is

ωSSB(m, n) =
(

m − (λ − 1)n

n

)
= (m − [λ − 1]n)!

n!(m − λn)!
. (18)

From the partition function, we can now specify the transfer rates. As a first requirement
we impose that the rates obey the detailed balance condition [23]

r+(m, n − 1)Z (m, n − 1) = r−(m, n)Z (m, n) (19)

for SSB (un)binding and

t+(m − 1, n)Z (m − 1, n) = t−(m, n)Z (m, n) (20)

for base-pair (un)zipping. Detailed balance guarantees that the probability distribution
P(m, n, t) for long times relaxes towards the Boltzmann distribution. However, the detailed
balance condition does not uniquely specify the rates. Using the remaining freedom of
choice [23, 17], we settle for the following forms. In the case of SSB (un)binding, we choose

r+(m, n) = (n + 1)q
Z (m, n + 1)

Z (m, n)
= (n + 1)qκ

�SSB(m, n + 1)

�SSB(m, n)
(21)

for the binding rate and

r−(m, n) = nq (22)

for unbinding. The unbinding rate, that is, is proportional to the number of bound SSBs, as it
should be. Apart from this n-factor, we choose it to solely depend on the constant unbinding
rate q . Conversely, the binding rate includes, apart from this rate q , the binding strength κ , the
relative number of degrees of freedom given by the ratio of the �SSB factors, and the factor
(n + 1). The factor (n + 1)�SSB(m, n + 1)/�SSB(m, n) accounts for the combinatorial number
of ways to put an additional SSB of size λ onto either arch of the denaturation fork. For λ = 1
the resulting expression for r+(m, n) becomes qκ(m − n) and thus designates the number of
free binding sites; compare the discussion in [17, 23].
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Similarly, we choose a completely asymmetric form for the base-pair (un)zipping rates.
Thus, for unzipping an additional base-pair we use1

t+(m, n) = t+(m) = k
Z DNA(m + 1, n)

Z DNA(m, n)
= ku, (23)

carrying the full Boltzmann factor u, apart from the rate constant k. The zipping rate

t−(m, n) = k
Z DNA(m − 1, n)

Z DNA(m, n)
= k

�SSB(m − 1, n)

�SSB(m, n)
(24)

contains all information related to the interplay with the number m of bound SSBs, and is
proportional to the probability that the base-pair next to the denaturation fork is unoccupied.
This choice realistically describes the fact that a region almost fully occupied with SSBs is
less likely to decrease in size. We note that in general t−(m, n) � k, and that t−(m, 0) = k.
Note also that we can conveniently define a dimensionless parameter

γ ≡ q

k
(25)

that measures the competition between SSB (un)binding and base-pair (un)zipping.

5. Results: blinking autocorrelation of the molecular beacon

Having defined the dynamics of the end-denaturation wedge in terms of the numbers of broken
base-pairs, m, and of bound SSBs, n, we now proceed to calculate the autocorrelation A(t) for
the blinking behaviour of a fluorophore–quencher pair mounted on the denaturation wedge as
shown in figure 2. Following the results from [20], we can express A(t) according to equation
(2) in the form

A(t) =
∑
p �=0

T 2
p e−t/τp , (26)

with relaxation times τp ≡ η−1
p , and where

Tp =
∑
m,n

Q p(m, n)

∣∣∣∣∣
m�xT

. (27)

It should also be noted that, in order to enable experimental detection, it might be necessary
for the fluorophore–quencher pair to be separated to more than the separation provided by
solely opening the base-pair xT . Thus, if � additional base-pairs need to be broken before
fluorescence occurs, the quantity Tp will be modified to Tp = ∑

m,n Q p(m, n)
∣∣
m�xT +�

.
Alternatively, we can rewrite the autocorrelation function A(t) according to the spectral

decomposition

A(t) =
∫ ∞

0
f (τ ) exp

(
− t

τ

)
dτ. (28)

In this way, we obtain the weighted spectral density (‘relaxation time spectrum’)

f (τ ) =
∑
p �=0

T 2
p δ

(
τ − τp

)
. (29)

This distribution f (τ ) yields information about the contributions of individual relaxation
modes to the autocorrelation function A(t); see also below.

1 We here, for simplicity, neglect any m-dependence of the rate constant k; compare the discussion about the ‘hook’
effect in [17, 18].
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For the two limiting cases corresponding to the absence of SSBs and to fast (un)binding
dynamics of the SSBs, we obtain analytical solutions for A(t) from the master equation (4)
below. The general case is solved numerically along similar lines to what was developed
in [17].

5.1. Absence of SSBs

If no SSBs are present, the (un)zipping rates t± assume the simpler form

t
+
(m) = t+(m, 0) = ku, (30)

and

t
−
(m) = t+(m, 0) = k, (31)

corresponding to the transfer rates for an asymmetric random walk. This contrasts with the
non-linear form for internal bubbles, which includes the loop entropy loss [17, 18]. The master
equation reduces to the one-variable form

∂ P(m, t)

∂ t
= t

+
(m − 1)P(m − 1, t) + t

−
(m + 1)P(m + 1, t) − [t

+
(m) + t

−
(m)]P(m, t)

(32)

with the eigenvalue decomposition P(m, t) = ∑
p cp Q p(m)e−ηpt . Thus, we obtain the

eigenvalue equation

− η p Q p(m) = t
+
(m − 1)Q p(m − 1) + t

−
(m + 1)Q p(m + 1) − [t

+
(m) + t

−
(m)]Q p(m),

(33)

with the obvious boundary conditions t
−
(0) = 0 and t

+
(M) = 0. The solution of the reduced

eigenvalue equation for Q p can be obtained in terms of orthogonal polynomials (or Chebyshev
polynomials) according to [17, 24]

Q p(m) = um/2

sin ωp

{
sin

[
(m + 1)ωp

] − u−1/2 sin
[
mωp

]}
, (34)

where the eigenvalues become

η p = k
[
u + 1 − 2u1/2 cos ωp

]
(35)

with

ωp = pπ

M + 1
. (36)

We notice that the relaxation times τ̄p ≡ 1/η̄p fulfil the inequalities

τmin(u) ≡ k−1 (
1 + u1/2)−2 � τ p � k−1 (

1 − u1/2)−2 ≡ τmax(u). (37)

Thus, at the melting transition where u = 1, and for an infinitely long DNA segment M → ∞,
the longest relaxation time diverges, i.e., the denaturation wedge has a diverging lifetime, as
one would expect. The correlation functions A(t) corresponding to the results above are shown
by the black dash–dotted curves in figure 4.

We note that conditions similar to the absence of SSBs are fulfilled if the concentration
of SSBs is very low, κ → 0, or if γ κ → 0; compare the existence of a kinetic block to SSB
binding in DNA bubbles [2, 3, 17, 18].
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Figure 4. Relaxation time spectrum f (τ ) and autocorrelation function A(t) for different values of
the binding strength κ and the ratio γ = q/k of the unbinding and the unzipping rate constants, as
indicated in the graphs. The dashed curves correspond to the approximation of adiabatic elimination
(fast binding). In the plots for the relaxation time spectra, f (τ ), the data were binned (the black
dashed lines at the top of the graphs show the bin size). We chose u = 0.6, λ = 5, xT = 1, and
M = 30. Notice that strongly binding SSBs increase the relaxation time by orders of magnitude
(logarithmic abscissa in the A(t) plots).

5.2. Fast (un)binding dynamics of SSBs

In the case where the (un)binding dynamics of the SSBs is much faster than the typical base-pair
(un)zipping rates, γ � 1, we can adiabatically eliminate the degrees of freedom corresponding
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to the SSB dynamics [25]. Ensuing are an effective free energy landscape, dressed by the SSB
interactions with the denaturation wedge, and a reduced one-variable master equation of the
type (32), but with the following (dressed) rate coefficients [17]:

t̃±(m) =
nmax(m)∑

n=0

t+(m, n)
Z (m, n)

Z (m)
, (38)

where Z (m) ≡ ∑
n Z (m, n). When calculating the two dressed rates t̃±, it is important

to include the boundary conditions (5), (7), and (8). From these we also deduce the
modified boundary conditions t̃+(M) = 0 and t̃−(0) = 0. The corresponding results for
the autocorrelation function are shown by the dashed curves in figure 4.

5.3. General case

In the general case when the dynamics of SSB (un)binding and base-pair (un)zipping occur on
comparable timescales, γ ∼ 1, the eigenvalue equation (12) has to be solved numerically; for
detailed elaboration of the procedure, see [17]. In figure 4, we display some typical examples
for the relaxation time spectrum and the autocorrelation function for various values of the SSB
binding strength κ and rate ratio γ .

5.4. Discussion

We first note that the autocorrelation function A(t) in the semi-log plot is non-exponential,
corresponding to a multimodal relaxation behaviour that was also observed in experiment [1].
This is reflected in the rather broad distribution of relaxation times shown in figure 4. In the
binned data for the relaxation times, the first bin contains the major portion of the relaxation
contributions for all cases. This describes the relaxation of the denaturation wedge itself, i.e.,
the relaxation due to the base-pair (un)zipping process. In the plots for A(t), this corresponds
to the first relaxation shoulder located at a few inverse zipping time units, k−1.

In the absence of SSBs, our coarse-grained plot of the relaxation time distribution shows
only one contribution, corresponding to only one relaxation shoulder in the graphs for A(t).
With increasing binding strength κ , a second relaxation shoulder in A(t) is building up. This is
due to the relaxation of SSB (un)binding. Let us discuss the somewhat involved behaviour for
the various values of κ in the case of λ = 1, for which the occupation fraction of SSBs on the
ssDNA branches of the denaturation wedge becomes f = κ/(1 + κ) [19]. We see that κ = 1
leads to an occupation fraction f = 1/2. In that case, we would expect the relaxation time for
SSB occupation to be the longest. For increasing and decreasing κ , the fractions of vacancies
and bound SSBs, respectively, are decreasing, so the exchange between the species becomes
faster and A(t) decays quicker than for κ = 1. However, for κ < 1, the number of bound
SSBs is smaller and mostly a certain binding site is vacant, and the relaxation therefore quicker
than for κ > 1, for which a site is mostly occupied. Indeed, these trends can be observed in
the plotted examples. The relaxation time contribution is the longest in the case κ = 1. This
observation is corroborated in figure 5 illustrating the behaviour of the longest relaxation time
as a function of the binding strength κ : the maximum close to κ ≈ 1 is distinct.

In the dependence of the ratio γ = q/k of the rates q for SSB unbinding and k for
base-pair unzipping, the increase in the relative speed, γ , of the SSB dynamics is immediately
evident from the shift towards shorter τ in the relaxation time spectrum. In the plots for A(t),
the results in the presence of SSBs approach the adiabatic approximation; in the case γ = 2,
virtually no difference between the full result and the fast binding limit are visible in A(t).
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Figure 5. Longest relaxation time τrelax as a function of SSB binding strength κ . Note the dramatic
variation of τrelax (logarithmic ordinate). We chose u = 0.6, λ = 5, and M = 30. A maximum
occurs at around κ = 1.

6. Conclusions

We investigated by means of a master equation approach, in detail, the dynamics of end-
denaturation of a clamped stretch of homopolymer DNA. The transfer rates were obtained
from the partition coefficients based on the Poland–Scheraga model of DNA denaturation. We
chose the rates t± and r± for base-pair (un)zipping and SSB (un)binding, such that detailed
balance is fulfilled, i.e., thermal equilibrium reached for long times. We furthermore chose
these rates in a fully asymmetric form, guaranteeing that base-pair unzipping is proportional
to the Boltzmann factor for breaking the base-pair and the fundamental rate k. For base-pair
zipping, the rate is given by k in the absence of SSBs, whereas in the presence of SSBs it
gets dressed with the combinatorial ratio slowing down the zipping when SSBs are bound
(essentially, by the probability that the base-pair next to the zipping fork is vacant), and
preventing closing of the wedge once it is fully occupied. Similarly, we chose the (un)binding
rates such that the unbinding is specified by the fundamental rate q times the number of bound
SSBs. Binding is biased by the binding strength κ and the probability of adding another SSB
to the two arches of the denaturation wedge.

Mounting a fluorophore–quencher pair at position xT on either arch of the associated
denaturation wedge, a molecular beacon is built whose blinking dynamics,corresponding to the
open or closed state of the base-pair xT , is described by the random variable I . For this quantity,
we obtained the autocorrelation function A(t) and the associated spectrum of relaxation times.
The quantity A(t) can be measured directly in experiments (see, e.g., [1, 15]). The predicted
behaviour of A(t) and the spectrum f (τ ) shows a multimodal behaviour with two pronounced
relaxation shoulders in the presence of SSBs. As our model involves physical parameters that
are known for given solvent conditions (u, κ) or can be determined independently (k, q), our
model becomes fully quantitative, and can be used to devise future experimental set-ups.

The molecular beacon set-up we propose represents the basis for an interesting nanosensor.
Constructing a small stretch of AT base-pairs and clamping them with a few GC base-pairs
at one end (compare the construction used in [1]), such a nanosensor would be of the linear
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size of some 20 nm. A low concentration of such nanosensors would therefore be sufficient to
probe for the presence of SSBs, salt conditions, or similar, in small probe volumes such as are
encountered in gene arrays. The rather large changes in the relaxation time spectrum invoked by
the presence of SSBs (or, by varying u, corresponding to temperature or salt condition changes,
not shown here) corroborate that this kind of sensor could actually be rather sensitive. We
note that instead of the conventional fluorophores, which bleach rather quickly, longer-lived
quantum dots or plasmon resonant nanoparticles are now available; see, for instance, [26, 27].

Whereas our calculations are for a homopolymer denaturation zone, the simplest
possibility with a view to designing a nanodevice, it is possible to extend the model to a
heterogeneous sequence; see [20]. However, the numerical evaluation of the corresponding
master equation may become challenging, especially when longer denaturation zones and
small SSBs are employed. An efficient alternative for such more involved cases is provided
by stochastic simulations techniques such as the Gillespie algorithm, as studied recently in the
context of denaturation fluctuations in DNA [22].
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